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Abstract. A theory of granular plasticity based on the time-averaged rigid-plastic flow equations is presented. Slow
granular flows in hoppers are often modeled as rigid-plastic flows with frictional yield conditions. However, such
constitutive relations lead to systems of partial differential equations that are ill-posed: they possess instabilities
in the short-wavelength limit. In addition, features of these flows clearly depend on microstructure in a way not
modeled by such continuum models. Here an attempt is made to address both short-comings by splitting variables
into ‘fluctuating’ plus ‘average’ parts and time-averaging the rigid-plastic flow equations to produce effective equa-
tions which depend on the ‘average’ variables and variances of the ‘fluctuating’ variables. Microstructural physics
can be introduced by appealing to the kinetic theory of inelastic hard-spheres to develop a constitutive relation
for the new ‘fluctuating’ variables. The equations can then be closed by a suitable consitutive equation, requir-
ing that this system of equations be stable in the short-wavelength limit. In this way a granular length-scale is
introduced to the rigid-plastic flow equations.

Key words: granular flow, granular temperature, plasticity

1. Introduction

The flow and handling of granular materials is of major importance to many industries. Yet,
despite efforts over several decades, the modeling of such flows has achieved only modest suc-
cess. Dense gravity-driven flows in hoppers have been often modeled as elastic–plastic con-
tinua, for example. In this picture, the granular material flows as a plastic with a frictional
yield condition, and deforms as an elastic solid otherwise. This model has been used to ana-
lyze mass flows, where the material is flowing throughout the hopper, but has failed to provide
adequate agreement with experiment in the prediction of quantities such as discharge rate, for
example [1]. Despite such shortcomings, Jenike’s [2] construction of steady-state incompress-
ible rigid-plastic radial solutions in hoppers with simple geometries has been of considerable
importance in hopper design [3, Chapter 10]. These are solutions for quasistatic flow (inertial
effects are neglected) where grains travel radially in conical or wedge-shaped hoppers. Only
recently have numerical solutions of steady-state quasistatic flows in more complicated geom-
etries been produced [4].

However, it is now clear that there are serious mathematical difficulties with the equations
for time-dependent incompressible rigid-plastic flow (IRPF). In many instances, the equations
for such flows have been shown to be ill-posed, i.e., they possess instabilities with arbitrarily
short wavelengths [5,6]. Hence, it is problematic to interpret the steady-state rigid-plastic
flow equations as long-time solutions of the time-dependent equations. Additionally, both the
steady-state and time-dependent equations have physical shortcomings. There are several fea-
tures of hopper flows where the particle size may be important, such as chute flows [7] and
shear-banding [8] indicating that it may not be appropriate to model such dense granular
flows as continua.
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Nonetheless, attempts have been made to describe such flow features in continuum theo-
ries in some average sense [9]. Indeed, the development of the shear-banding instability may
be related to ill-posedness in continuum plastic flow models [10]. One approach to dealing
with this in a continuum theory is to model materials with internal structure by the inclusion
of extra terms motivated by physics at the granular scale. These extra terms can damp the
instabilities that lead to ill-posedness and can be used to predict shear-band thickness Muhl-
haus [9]. Including such damping terms which act at a granular length-scale and ‘thickening’
the shear-bands is a practical approach to studying granular flows using continuum equations.

Indeed, such an approach is analogous to including Reynolds stresses in the Navier–Stokes
equations to model turbulence. In granular systems the analog of the Reynolds stresses is
granular temperature. Granular temperature arises naturally in the theory of inelastic gases
[11]. Savage [12] introduced granular temperature into plastic flow equations in order to facili-
tate the introduction of the particle size into the continuum equations for plastic flow. We will
introduce granular temperature for a similar purpose here, appealing to the kinetic theory of
inelastic gases to introduce grain size into the equations.

We begin by examining the IRPF equations in two-dimensions and review the proof that
these equations are ill-posed. We then introduce a granular temperature in a general way,
before building it specifically into the plastic flow equations. We then show that with an
appropriate choice of constitutive relations, the modified IRPF equations are well-posed.

2. Equations for an incompressible rigid-plastic flow

We begin by considering the flow under gravity of an incompressible granular material in a
wedge-shaped hopper under plane strain. We model the flow of this material as a continuum
rigid-plastic flow. The equations for such a flow consist of the incompressibility condition,

∇ ·u=0, (1)

where ui are the components of the velocity field, and the momentum equations:

ρ

(
∂ui

∂t
+u ·∇ui

)
+∇j σij =ρgi, (2)

where σij is the symmetric stress tensor, gi is the acceleration due to gravity and ρ is the den-
sity of the flowing granular material. Note that we define σ to be positive when forces are
compressive.

Here we will consider flows where plastic deformation is occurring everywhere in the hop-
per, i.e., the material is at plastic yield throughout the hopper. We will use an extended von
Mises yield condition. In terms of the principal stresses σi , this condition is written as

(σ1 −σ)2 + (σ2 −σ)2 + (σ3 −σ)2 ≤k2σ 2, (3)

where k=√
2 sinϕ, ϕ is the internal angle of friction of the material and σ = 1

3 (σ1 +σ2 +σ3) is
the average trace of the stress tensor (we will refer to σ as the average stress). If this inequal-
ity is satisfied exactly then the material is deforming plastically. Under plane strain σ2 =σ =
1
2 (σ1 +σ3), so in this case we may consider a strictly two-dimensional yield condition:

(σ1 −σ)2 + (σ3 −σ)2 =k2σ 2. (4)

We now assume a non-associated flow rule of the form

σij =σδij +µVij , (5)
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where Vij =∇(iuj)= (∇iuj +∇j ui)/2 and µ is some, as yet unspecified, scalar function of the
normal stress and strain rates. If we compare the flow rule (5) to the yield condition (3), then
we see such a flow will satisfy the yield condition exactly if we choose the function µ to be

µ= kσ

‖V ‖ , (6)

where ‖V ‖= (VijVji)1/2.
Equations (1), (2), (5) and (6) form a closed system for incompressible rigid-plastic flow

in plane strain. For granular flows in hoppers, these equations are only valid for so-called
mass flows where the material is flowing throughout the hopper. When the hopper is not
sufficiently steep, funnel flows can develop where material flows down a central funnel leav-
ing a stagnant region adjacent to the walls. Indeed, radial solutions have been used to study
the transition between mass and funnel flow which is thought to occur when the rigid-plas-
tic equations become singular as the rate of deformation vanishes [13]. We will restrict our
attention to mass flows where rigid-plastic flow occurs everywhere in a given domain.

Combining Equations (1), (2), (5) and (6) together we obtain the equations:
(
∂ui

∂t
+u ·∇ui

)
=ρgi −∇j

(
σ
(
δij −kAij

))
, (7)

∇iui =0, (8)

where Aij =Vij /‖V ‖. We note that Tr(Aij )=0 and that Tr(AikAkj )=1.
The Equations (7) and (8) have been shown to be linearly ill-posed in certain geome-

tries and for certain parameter values [5]. Specifically, the linearized equations of motion that
describe the propagation of a small disturbance in the flow, possess unstable plane-wave solu-
tions in the short wavelength limit. In what follows, we will consider the linearized equations
of motion for a plane-wave disturbances. We restrict ourselves here to 2D flows under plane-
strain (4).

We will begin by writing the two-dimensional rigid-plastic equations ((7) and (8)) in non-
dimensional form as follows:

ûi =ui/u0, σ̂ =σ/ρgL, x̂i =xi/L, t̂= t g/u0, (9)

where u0 is some characteristic velocity and L is some characteristic length-scale of the prob-
lem. The equations for the rigid-plastic flow then become

∂ûi

∂ t̂
+Fr2û · ∇̂ui =gi/g−∇̂j

(
σ̂
(
δij −kAij

))
, (10)

∇̂ · û=0, (11)

where Fr=u0/
√
gL is the Froude number. For the remainder of this section we will drop the

ˆ notation and assume that we are dealing with dimensionless quantities.
The linearized equations of motion for a small disturbance (δu, δσ ) propagating on a

smooth background solution (u, σ ) to Equations (10) and (11) can be shown to be

∂δui

∂t
+Fr2 (u ·∇δui + δu ·∇ui)=∇j

((
kAij − δij

)
δσ +σ δAij

)
, (12)

∇ · δu=0, (13)
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where

δAij = Âijkl∇kδul‖V ‖ = (δi(kδl)j −AijAkl
) ∇kδul

‖V ‖ .

We now consider plane-wave disturbances (δu, δp)=exp (λt+ iξ ·x)(a, α) propagating with
wavevector ξ . In general α and a will be complex quantities. From the linearized equations,
we obtain the following relations for λ, a and α:

λai =Biα+Cijaj , (14)

ξ ·a =0, (15)

where

Bi =
(
k∇jAij + i

(
kAij − δij

)
ξj
)
, (16)

Cij =−Fr2 (∇j ui + i(ξ ·u)δij
)+ ξl(−µÂijklξk + i∇k

(
µÂijkl

))
. (17)

One can solve (14) and (15) for λ for every wavevector ξ . The real part of λ determines the
growth or decay of the plane-wave disturbance with wavevector ξ , and the imaginary part
determines the speed of propagation of the disturbance. If the real part of λ is positive for
any ξ , we refer to this mode as linearly unstable, as this mode will grow rapidly in time. If, for
a unique background solution of the equations, there are unstable modes with growth rates
Re(λ)>0 that diverge in the short-wavelength limit (ξ→∞) then we will call these equations
and the corresponding solutions linearly ill-posed.

Using the condition ξ ·a =0 we can eliminate α from the equation for λ:

λai =Pij aj , (18)

Pij =
(
δik − Biχk

B ·χ
)
Ckj , (19)

α=− Cij

B ·χ χiaj , (20)

where χ = ξ/|ξ |. The eigenvalues of the matrix P (19) determine the growth and propagation
of the infinitesimal plane-wave disturbance.

Since
(
δij − Biχj

B·χ
)
Bj = 0, it follows that Pij has at least one zero eigenvalue λ1 = 0. Since

we are working in two dimensions, the remaining eigenvalue is equal to the trace of P: λ2 =
Tr(P ). This eigenvalue is thus given by

λ2 =Tr(C)− CijχiBj

B ·χ . (21)

We now consider the short wavelength (|ξ |→∞) limit of (21). The leading-order term in
ξ on the right-hand side goes as O(|ξ |2) and is real with coefficient

−µA(A−k/2)
1−kA , (22)

where A= χiAijχj . This leading order term was considered by Schaeffer [5] in his analysis
of (7) and (8). In two dimensions it is straight-forward to show that |Aijχj |2 = 1/2 so that
|A|2 =|χiAijχj |2 ≤1/2. Thus the denominator is always positive for angles of friction ϕ<π/2.
However we see that the numerator is negative for 0<A< k

2 . This occurs when the direction
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of χ lies between the direction of the velocity characteristics (these lie at ±π/4 to the princi-
pal stress directions) and the direction of the stress characteristics (these lie at angles of (±ϕ+
π/2)/2 to the principal stress directions) of the background solution.

We conclude that plane wave disturbances with wavevectors ξ that lie in directions between
the stress and velocity characteristic directions will be unstable in the short wavelength limit
as the real part of λ2 will be positive and is O(ξ2) in this limit. Thus we conclude that the
two-dimensional granular flow equations are linearly ill-posed [5].

3. Granular temperature

Our aim is to introduce microstructural terms in order to regularize the ill-posedness of the
2D IRPF equations. To do this we now introduce a granular temperature by decomposing the
velocity field into a mean, slowly varying part U(x, t) and a rapidly fluctuating part u′(x, t):

u(x, t)=U(x, t)+u′(x, t). (23)

Taking the time-average of u(x, t) then yields

〈u(x, t)〉=U(x, t), (24)

so that 〈u′〉=0. If we then let

Tij =〈u′
iu

′
j 〉, (25)

then the granular temperature is defined by T = Tr(Tij ). The fluctuating velocity field intro-
duces a new scale which we write as T 1/2

0 . Thus, the granular temperature scales as T0. In
what follows we will assume that Tij = 1

n
T δij where n is the number of spatial dimensions.

The incompressibility condition can now be split into a mean and fluctuating part. By
‘fluctuating part’ we mean the difference between the full Equation (1) and the equation
obtained by averaging (1):

∇ ·U =0, (26)

giving the fluctuating part as

∇ ·u′ =0. (27)

Now consider the fluctuating part of the momentum equation (2). This averaged momentum
equation is given by

ρ

(
∂Ui

∂t
+U ·∇Ui

)
+∇j

(〈σij 〉+ρTij
)=ρgi. (28)

Subtracting this from (2) gives the so-called fluctuating part of the momentum equation:

ρ

(
∂u′

i

∂t
+U ·∇u′

i +u′
j∇jUi +u′

j∇j u′
i

)
+∇j σij =∇j

(〈σij 〉+ρTij
)
, (29)

where we have made use of (1) and (23). Now multiplying (29) by u′
k and contracting over

the indices i and k, we obtain an equation for the granular temperature:

ρ

2

(
∂T

∂t
+U ·∇T +∇j 〈u′

iu
′
iu

′
j 〉
)

+ρ Tij∇jUi =−〈u′
i∇j σij 〉, (30)
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A conservation equation for the granular temperature can be developed on general
grounds [12]:

ρ

2

(
∂T

∂t
+U ·∇T +UiTij∇j + 1

2
∇j 〈u′

iu
′
iu

′
j 〉
)

=−∇jQj −〈σij 〉∇iUj −γ, (31)

where Q is the energy flux vector and γ is the rate of energy dissipation per unit volume.
This form of conservation equation for granular temperature can also be obtained from the
kinetic theory of inelastic spheres [11]. Bocquet et al. [14] applied this kinetic theory to dense
Couette flows, deriving the following expressions for Qi and γ in the dense limit of the kinetic
theory:

Qi =−κ σd
T 1/2

∇iT , (32)

γ = ε σT
1/2

d
, (33)

where κ > 0 and ε > 0 are dimensionless material constants, and d is a representative grain
diameter. In what follows we will use the conservation equation for temperature (31) with the
energy flux and dissipation terms given by (32) and (33).

Comparing Equation (30) then with (31), we arrive at the following identity:

〈σijVij 〉+ ε σT
1/2

d
=∇i

(
〈σiju′

j 〉+κ σd
T 1/2

∇iT
)
. (34)

It is useful now to work with non-dimensional quantities. Writing D=d/L, we find that

〈σijVij 〉+ 1
D

(
T

1/2
0

u0

)
εσT 1/2 =

(
T

1/2
0

u0

)
∇i
(
Dκ

σ

T 1/2
∇iT +

(
T

1/2
0

u0

)
〈σiju′

j 〉
)
. (35)

Now, for smooth flows we expect D
1. In this case, since the first term on the lefthand side
is O(1), we find the following relation for the temperature scale T0 must hold:

T
1/2
0 ∼Du0, (36)

and thus T0 
u2
0.

We now consider the fluctuating part of the stress tensor. Returning to the fluctuating part
of the momentum equation we can estimate the relative magnitude of the stress fluctuations,
�∼σ ′/ρgL, that correspond to the velocity fluctuations u′ ∼T 1/2

0 . Rewriting (29) in terms of
non-dimensional quantities and rearranging in terms of the stress fluctuations σij −〈σij 〉 we
find:

�

D
∇j
(
σij −〈σij 〉

)= ∂u′
i

∂t
+Fr2

(
Uj∇j u′

i +u′
j∇jUi

)
+ DFr∇j

(
u′
j u

′
i −Tij

)
, (37)

where we have made use of (36) to eliminate T0. We will only consider slow, smooth flows
here where Fr
1 and D
1, so we see that in this case �∼D. Thus for slow smooth flows,
we expect stress fluctuations of order ρgd to couple to the fluctuating part of the velocity.

This analysis has given us some indication of how the granular temperature and stress
fluctuations may scale in smooth slow flows by appealing to the dense-limit of the kinetic
theory of inelastic gases. As yet we have not specified the stress tensor nor the nature of the
stress fluctuations. This is our goal in the next section.
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4. Mean stress

To relate the velocity and stress fluctuations, we now assume that the flow rule (5) and con-
stitutive law (6) hold for the full stress and velocity fields:

σij =σ (δij −kAij
)
. (38)

We can decompose this stress tensor into average and fluctuating parts by expanding σ and
u about their means, 〈σ 〉= σ̄ and 〈u〉= U respectively. To facilitate this we introduce the fol-
lowing notation:

V̄ij =Vij |u=U =∇(iUj),
σ̄ij = σ̄ (δij −kĀij

)
,

... etc.,

so that the bar denotes evaluation at u=U . Now, expanding σij as indicated, where σ ′ is the
fluctuating part of σ , and continuing to work with non-dimensional quantities, we obtain

σij = σ̄ij +D
(
σ ′
(
δij −k V̄ij‖V̄ ‖

)
− kσ

‖V̄ ‖ Âijkl∇ku
′
l

)

−D2 k

‖V̄ ‖

(
Âijklσ

′ − σ̄

‖V̄ ‖ Ĉijklmn∇mu
′
n

)
∇ku′

l + O(D3), (39)

where

Âijkl = δi(kδl)j − Āij Ākl, (40)

and

Ĉijklmn= 1
2

(
ÂijklĀmn+ ÂklmnĀij + Âmnij Ākl

)
. (41)

Note that we have assumed that we are dealing with a smooth, slow flow so that (36) holds.
Consequently this expansion produces a power series in D. Further, we can now compute the
mean stress

〈σij 〉= σ̄ij − kD2

‖V̄ ‖

(
Âijkl〈σ ′∇ku′

l〉− σ̄

‖V̄ ‖ Ĉijklmn〈∇ku
′
l∇mu′

n〉
)
, (42)

to order D2. Note that the O(D) terms have vanished as they are linear in the (zero mean)
fluctuating variables. Thus the mean stress 〈σij 〉, which appears in the averaged momentum
equation and the temperature conservation equation, receives contributions of order D2 due
to variances in velocity and stress fluctuations. Specifically these O(D2) contributions to the
average stress involve the variances 〈σ ′∇ku′

l〉 and 〈∇ku′
l∇mu′

n〉. To close this system, we wish
to write these variances as functions of the mean variables (U , σ̄ , T ). Here we propose the
following simple relations:

〈σ ′∇ku′
l〉=ψ∇k

(
T 1/2∇l σ̄

)
, (43)

〈∇ku′
l∇mu′

n〉=2φ∇k∇mTln=φδln∇k∇mT , (44)

where ψ and φ are dimensionless constants. In the next section we will motivate this choice of
closure relations by showing they lead to a well-posed system of equations for smooth, slow
two-dimensional flows.
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The average stress now takes the form:

〈σij 〉= σ̄ij −D2 k

‖V̄ ‖

(
ψÂijkl∇k(T 1/2∇l σ̄ )− φσ̄

‖V̄ ‖δk(iĀj)m∇k∇mT
)
. (45)

We can now write down a set of equations for incompressible rigid-plastic flow involving only
averaged quantities, correct to O(D2):

∇ ·U =0, (46)

(
∂Ui

∂t
+Fr2

(
U ·∇Ui +D2∇j Tij

))
+∇j

(
σ̄ (δij −kĀij )

)

−kD2∇j
(
ψ

‖V̄ ‖ Âijkl∇k(T
1/2∇l σ̄ )− φσ̄

‖V̄ ‖2
δk(iĀj)m∇k∇mT

)
=gi/g, (47)

D2

2

(
∂T

∂t
+Fr2 (Uj∇j T +Tij∇jUi

))

=D2
(
κ∇j

(
σ̄

T 1/2
∇j T

)
− kφσ̄

‖V̄ ‖∇2T

)
+ σ̄

(
k‖V̄ ‖− εT 1/2

)
. (48)

These constitute a closed set of equations for the averaged variables U , σ̄ and T .

5. Stability

In this section we examine the stability of slow, smooth solutions (i.e., Fr 
 1, D
1) to
Equations (48–50). Again we consider plane-wave disturbances (δu, δp, δT )= exp (λt+ iξ ·x)
(a, α, τ ) propagating with wavevector ξ . From the linearized equations, we obtain the follow-
ing equations for a, α and τ :


 ξ

2µQij +λδij iξ3D2Rri −iξ3D2Ssi

χj 0 0
−iξkσχiAij −iξD2G D2(ξ2H +λ)




ajα
τ


=0, (49)

where

Qij = Âijklχkχl +O(1/ξ), R= kψ

‖V ‖ , S=µφ,

ri = Âijklχjχkχl +O(1/ξ), si = δk(iAj)mχjχkχm+O(1/ξ),

G= χ ·∇T
T 1/2

+O(1/ξ), H = κσ̄

T 1/2
− kφ

‖V̄ ‖ +O(1/ξ). (50)

It is straightforward to eliminate α and τ to obtain the following eigenvalue problem:
(
Wλδik +PijZjk

)
ak =0, (51)

where

W =D2(R(λ+χ2H)ri − iξGSsi)χi, (52)

Pij = δij − riχj

(r ·χ) , (53)

Zjk = ξ2µWQjk−iξ3D2Ssjχl(µGQlk−iξkσRr ·χAlk ). (54)
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Again one can show that the matrix PijZjk has at least one zero eigenvalue (since Pij rj =
0). Thus, in two dimensions the remaining eigenvalue is equal to the trace of PijZjk. This
identity results in a quadratic equation for this eigenvalue λ2, giving two solutions to leading
order in ξ (provided ψ �=0):

λ2 = ξ2σ̄

2

(
−�1 ±

√
�2

1 −4�2 +O
(

1
ξ

))
, (55)

where

�1 = κ

T 1/2
+ k

‖V̄ ‖

(
A2

1−A2
−φ

)
, (56)

�2 = 1

2(1−A2)‖V̄ ‖

(
κ

T 1/2
− kφ

2‖V̄ |‖ (1+A2 −2A4)

)
. (57)

If we choose φ<0, then we see that both �1 and �2 are positive for k, κ >0 (recall that |A|2 ≤
1/2). There are then two cases: if �2

1 −4�2>0, then the O(ξ2) contribution to λ2 is real and
since �2> 0, both of the values for λ2 are negative. However, if �2

1 − 4�2 ≤ 0, then the real
part of the O(ξ2) contribution to λ2 is −�1ξ

2/2< 0. We conclude that the real part of the
leading order contribution in ξ to λ2 is negative for φ<0. Thus, smooth, slow flows governed
by Equations (48)–(50) are well-posed provided we choose φ<0 and ψ �=0.

6. Discussion

Equations (48)–(50) give a set of equations for the average variables U, σ̄ and T . In the limit
where d→0, these equations reduce to the equations for incompressible rigid-plastic flow plus
an algebraic relation linking granular temperature and the deformation rate ‖V̄ ‖. We have
shown that the choice of closure relations (45) and (46) lead to a well-posed set of equations
for smooth slow flows under the conditions that φ<0 and ψ �=0. Physically, this first require-
ment corresponds to the condition that the ∇2T term in Equation (50) be dissipative. Thus
the effect of this term in the temperature conservation equation (50) is to conduct granular
temperature from hot regions to cool regions. In addition, the coefficient of the first closure
relation (45) must be non-zero to preserve the coupling between high-order derivatives of the
pressure and temperature in the momentum equation and guarantee well-posedness. This term
in the momentum equation conserves temperature intrinsically and so does not appear in the
temperature conservation equation.

Although we have not provided a clear physical motivation of the closure relations, they
are dimensionally and tensorially consistent. A detailed theory of velocity and stress fluctu-
ations could be developed to extend or replace equations (45) and (46). Another approach
might be to expand the variances in all dimensionally and tensorially consistent terms involv-
ing T and σ̄ and their derivatives. In this case, we suggest that demanding that the result-
ing equations be well-posed would be a useful discrimant to apply to such closure relations.
We have worked in two-dimensional plane-strain conditions here for simplicity. A full theory
would need to address these issues in three dimensions for compressible granular flows.

We have also not examined the question of whether solutions to (48–50) reduce to solu-
tions of the IRPF in this limit. Note that the equations (48–50) involve T and derivatives
of T , which require new boundary conditions over and above those required by the IRPF
equations. Boundary conditions that are placed on the granular temperature will effectively
place new conditions on the velocity derivatives through Equation (50) in the limit d→0. The
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nature of these boundary conditions on the temperature will determine whether solutions to
(48)–(50) reduce to solutions of the IRPF as d→0. For instance, one could demand that any
boundary conditions on T preserve solutions of the IRPF equations in this limit. Whether
this is physically reasonable or not, requires a more detailed examination of granular temper-
ature than we have undertaken here.

An important assumption in deriving the expression for the average stress (41), was that
the full stress tensor obeyed the constitutive laws (5) and (6). This allowed us to relate veloc-
ity fluctuations to the stress fluctuations. Savage [12] relates velocity and stress fluctuations
using a constitutive law developed directly from the kinetic theory of inelastic gases. Savage
also suggests a relationship between the temperature scale and the particle size that is very
similar to (36). Indeed, our analysis in Section 3 can be directly applied to the equations of
Savage.
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